Quasars

Discovery

• 1st – 3C273
• Optical ID of radio sources
 – While studying a radio source
 – a star in visible light was seen in a photograph
 – ID’d as radio source/quasar, not star - 1963
• Spectrum unusual, not star-like, stronger in the radio part of spectrum than visible, large redshift – 15% wavelength shift
Quasars

• Energy Source
 – The accretion of matter into a large black hole in an active galactic nucleus

• Properties
 • Quasars emit radiation in several wavelengths and are especially strong in the radio and ultraviolet wavelengths
 • In visible light they are star-like
 • Very bright with large redshifts
 • They are variable in their energy output
 • They have an ultraviolet excess, which means that they are bright in the ultraviolet, more than expected from their visual brightness
 • Have jets, some extending millions of light years out

Quasar PRC2000-18b
Varying Energy Output

• Variable energy output
 – Places an upper limit on their size
 – If brightness of object varies in time t, the region is no larger than ct
 – Brightness, does not vary faster than size of region divided by c
 – Source of brightness smaller than distance light travels in time t
 – Quasars have time scale of few months
 • Limits emitting region to 10^{12} km

Jets

• High energy outflows in a narrow beam
 – Mass flowing into the black hole from the galaxy orbits in an accretion disk around the black hole
 • A magnetic field from the gas is in the orbit
 – It winds up and shoots out particles perpendicular to the BH
 » Particles are carried out in a jet
Red Quasars

- Redder than normal quasars
- Normal quasars
 - Matter falling into black hole heats up and glows
 - Hot, appears blue
- Red quasars
 - Dust in front absorbs blue, so redder and fainter than normal
 - Dust makes them difficult to find
Discovering new quasars

• Star-like objects with colors different from typical stars
 – Associated with radio/x-ray emission
 – With unusual spectrum with large redshift that suggests quasar nature
• Looking for ultraviolet excess

Black Holes as Energy Source

• Material ejected over long period of time along a single axis – jets observed
• Quasars vary brightness in short time scale
• Black hole with accretion disk
 – Friction and compression heats gas
 • Gas hot, so most quasars appear blue
 – Cause high energy emission
NGC 4261

Gas and dust disk around a black hole which is powering a quasar

Companion Galaxy and Galaxy Nucleus
References

• http://hubblesite.org/
• http://www.astro.psu.edu/users/steinn/Astro1/lec26.html
• William Keel, *Quasar Explained*, Astronomy, Feb. 2003, p. 34-41