• Ch 17: Kinetic Theory
 Stress
 Strain

• Ch 18: 1st Law of Thermodynamics
The Physics 111 Help Session

For the rest of the semester

• Thursday, Dec. 9, 3 - 5pm and 7 - 9pm
I’ll be available for questions, though.

No Lab This Week
Announcements

Monday, Dec. 13, 2004
10:30 am – 12:30 pm
everything

• **Hint:** Be able to *do the homework* (graded AND *recommended*) and you’ll do fine on the exam!

• You may bring one *8.5”X11” crib sheet* (*hand-written on both sides*), a *pencil or pen*, and a *scientific calculator* with you.

• I will put any constants and mathematical formulas that you might need on a single page attached to the back of the exam.
Announcements

Monday, Dec. 13, 2004
10:30 am – 12:30 pm
everything

- **Part 1: Fluids & Thermodynamics**
 3 sections - you choose 2
 7.5% of overall final grade

 topics covered:
 - heat transfer: radiation, conduction, convection
 - calorimetry
 - fluids
Monday, Dec. 13, 2004
10:30 am – 12:30 pm
everything

- Part 2: Cumulative
 5 sections - you chose 3
 1 multiple choice section (required)
 4 other sections, one of them essay - you choose 2
 15% of overall final grade

topics covered:
MC (everything), graphing, kinematics
Newton’s Laws, work, energy, collisions
oscillations, thermodynamics
Due by 5 pm this Friday
Online -- 45 min
5 CP credit points

• **No need to study for it**

• It’s really a test for the effectiveness of my teaching style this semester.

• Do your best, but no books, notes, help from others, etc.

• Follow the link on our class home page:
 http://physics.valpo.edu/courses/p111
Recall from last time we derived from kinetic theory the relationships

\[T = \frac{2}{3k_B} \left(\frac{1}{2} m < v^2 > \right) \quad \text{OR} \quad \frac{3}{2} k_B T = \frac{1}{2} m < v^2 > \]

We now see directly the relationship between Temperature and molecular kinetic energy.
Recall that $< v^2 > = 3 < v_x^2 >$

So

$$\frac{1}{2} m < v_x^2 > = \frac{1}{2} k_B T$$

This result implies that 1/3 or the kinetic energy (on average) can be found in each direction the gas molecules are allowed to move. We call these directions in which the molecules may move “degrees of freedom”--i.e., the number of ways in which a molecule is free to move.
Energy is equally divided among the available degrees of freedom for a system in thermal equilibrium.

This theorem implies that the total energy of a 3-D monatomic gas with N molecules is given by

$$E_{tot} = N\left(\frac{1}{2} m <v^2>\right) = \frac{3}{2} Nk_B T = \frac{3}{2} nRT$$
The close relationship between temperature and kinetic energy of the molecules in a gas allows us to find the average speed of those molecules if we know the temperature. We call this speed the root-mean-square (rms) speed.

\[v_{rms} = \sqrt{<v^2>} = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3RT}{M}} \]

\(M \) is the mass per mole
How would the rms speed of the molecules in a gas change if the pressure of the gas was doubled while the volume was kept constant?

1) increase a factor of 4
2) increase by a factor of 2
3) increase by a factor of 1.4
4) stay the same
5) decrease by a factor of 1.4
6) decrease by a factor of 2
7) decrease by a factor of 4

Worksheet #1
How would the rms speed of the molecules in a gas change if the pressure of the gas was doubled while the volume was kept constant?

\[
\begin{align*}
P_0 V &= N k_B T_0 \\
2P_0 V &= N k_B T_f \\
T_f &= 2T_0 \\
\sqrt{3k_B T_0} &= \frac{v_{rms0}}{m} \\
\sqrt{3k_B T_f} &= \frac{v_{rmsf}}{m} = \sqrt{3k_B 2T_0} = (\sqrt{2})v_{rms0}
\end{align*}
\]
Stress on an object results in strain.

A stress results when a force is applied across a surface of a given object. Stresses result in deformations of the object known as strains.
We push on a piece of copper with a force F. If we apply the force over the entire cross-sectional area of the end of the tube, the stress is given by

$$\text{stress} = \frac{F}{A}$$

Units:

$[\text{stress}] = \frac{[F]}{[A]} = \frac{N}{m^2}$
What happens to real objects when we exert stress such as applied in this figure?

In this case, the copper rod will be compressed. The fractional change in its length is known as the strain.

\[\text{strain} = \frac{\Delta l}{l} \]
When **stresses** are applied, objects undergo **strain**. The ratio of the **stress** to the **strain** turns out to be a characteristic of the material from which the object is made.

We call the property of a material related to the way it **strains** under **stress**….

Young's Modulus

\[
Y \equiv \frac{\text{stress}}{\text{strain}} = \frac{F}{A} \frac{\Delta e}{e}
\]
$Y \equiv \frac{\text{stress}}{\text{strain}} = \frac{F}{A} \frac{\Delta l}{l}$

Notice that Young’s modulus will have the same units as stress: \(\text{N} / \text{m}^2 \)

We’ve looked at compressive stress. What happens when we try to stretch an object instead of trying to compress it?
We name the stress that tries to pull an object apart the “tensile stress.”

Again, the ratio of the stress to the strain is still a characteristic of the material from which the object is made.

In fact, Young’s modulus describes tensile stress as well as compressive stress.
A 500-kg load is hung from a 3-m steel wire ($Y = 2 \times 10^{11} \text{ N/m}^2$) with a cross-sectional area of 0.15 cm2. By how much does the wire stretch?

Well, the force exerted by a 500-kg load is

$$F = mg = (500 \text{ kg})(9.8 \text{ m/s}^2) = 4.9 \times 10^3 \text{ N}$$

stress = \frac{F}{A} = \frac{4.9 \times 10^3 \text{ N}}{1.5 \times 10^{-5} \text{ m}^2} = 3.27 \times 10^8 \text{ N/m}^2$$

$$Y = \frac{stress}{strain} \quad 2 \times 10^{11} \text{ N/m}^2 = \frac{3.27 \times 10^8 \text{ N/m}^2}{strain}$$
A 500-kg load is hung from a 3-m steel wire ($Y = 2 \times 10^{11} \text{ N/m}^2$) with a cross-sectional area of 0.15 cm2. By how much does the wire stretch?

\[\text{strain} = \frac{3.27 \times 10^8 \text{ N/m}^2}{2 \times 10^{11} \text{ N/m}^2} = 1.63 \times 10^{-3} \]

\[\text{strain} = \frac{\Delta l}{l} = 1.63 \times 10^{-3} = \frac{\Delta l}{3 \text{ m}} \]

\[\Delta l = 4.9 \times 10^{-3} \text{ m} \]
We can conceive of yet another way to try to deform our copper tube...

Shear stress tries to move one end of the tube in one direction and the other end in the opposite direction!

Unfortunately... shear stress is NOT characterized by Young’s modulus...
Let’s look at a side view of what happens to our copper cylinder under the influence of shear stress.

Shear stresses produce shear strains

Shear stress: \[\sigma = \frac{F_s}{A} \]

where \(A \) is the area of the top of the cylinder.
Let’s look at a side view of what happens to our copper cylinder under the influence of *shear stress*.

Note: the units of *shear stress* are *strain* the same as our *tensile* and *compressive* forms of *stress* and *strain*.

\[
\text{shear strain } = \frac{\Delta x}{\ell}
\]
The manner in which an object responds to shear stresses is also a characteristic of the material from which it’s made.

Here, we define the ratio of the shear stress to the shear strain as the shear modulus:

\[
S = \frac{\text{shear stress}}{\text{shear strain}} = \frac{F_s / A}{\Delta x / \ell}
\]

This quantity has the same units as Young’s modulus: N/m².
A child slides across a floor in a pair of rubber-soled shoes. The frictional force acting on each foot is 20 N, the cross-sectional area of each foot is 14 cm\(^2\), and the thickness of the soles is 5 mm. Find the horizontal displacement of the bottom of the soles relative to the top of the soles. The shear modulus for rubber is \(3.0 \times 10^6\) N/m\(^2\).

\[
S = \frac{F_s / A}{\Delta x / \ell}
\]
A child slides across a floor in a pair of rubber-soled shoes. The frictional force acting on each foot is 20 N, the cross-sectional area of each foot is 14 cm2, and the thickness of the soles is 5 mm. Find the horizontal displacement of the bottom of the soles relative to the top of the soles. The shear modulus for rubber is 3.0×10^6 N/m2.

$$3 \times 10^6 \text{ N/m}^2 = \frac{20 \text{ N}}{(14 \times 10^{-4} \text{ m}^2)} \cdot \frac{\Delta x}{(5 \times 10^{-3} \text{ m})}$$
A child slides across a floor in a pair of rubber-soled shoes. The frictional force acting on each foot is 20 N, the cross-sectional area of each foot is 14 cm2, and the thickness of the soles is 5 mm. Find the horizontal displacement of the bottom of the soles relative to the top of the soles. The shear modulus for rubber is 3.0×10^6 N/m².

\[
\Delta x = 2.4 \times 10^{-5} \text{ m}
\]
To end the semester, we take a quick look at the first, second, and third laws of thermodynamics, and what they mean for life in the modern world. We also use P-V diagrams to understand the work done by ideal gasses.
Let’s approach the 1st Law from the perspective of energy conservation.

We spent a fair bit of time developing an understanding of pressure and temperature using kinetic theory.

We now know that an object at a temperature T has an associated thermal energy.

For a container of an ideal, mon-atomic gas, we saw the average kinetic energy per molecule is

$$\langle K \rangle = \frac{3}{2} k_B T$$
Let’s approach the 1st Law from the perspective of energy conservation.

If our container has \(N \) molecules of this gas in it, then the total kinetic energy of the molecules inside is given by:

\[
E_{th} = \frac{3}{2} N k_B T
\]

This energy is called the “internal energy” or “thermal energy” of the gas. I’ll use the latter term and stick with \(E_{th} \) to represent it.
Let’s approach the 1st Law from the perspective of energy conservation.

Recall the work - kinetic energy theorem

\[W_{net} = \Delta K \]

The net work can be represented by two terms, one for the work done by conservative forces on the system and the other for work done by non-conservative forces on the system:

\[W_{cons} + W_{nc} = \Delta K \]
Let’s approach the 1st Law from the perspective of energy conservation.

Work done by conservative forces can be written in terms of the potential energy function

\[-\Delta U + W_{nc} = \Delta K\]

…or in the more familiar form

\[W_{nc} = \Delta K + \Delta U\]

Work done on the system changes the system’s kinetic energy, potential energy, or both.
Let’s approach the 1st Law from the perspective of energy conservation.

\[W_{nc} = \Delta K + \Delta U \]

It’s helpful to think of this equation macroscopically, breaking the thermal energy term away from the kinetic energy.

If we do that, then we can rewrite our equation as

\[W_{nc} = \Delta K_{cm} + \Delta E_{th} + \Delta U_{cm} \]
Let’s approach the 1st Law from the perspective of energy conservation.

\[W_{nc} = \Delta K_{cm} + \Delta E_{th} + \Delta U_{cm} \]

This formulation allows me to separate the thermal motion of the molecules from the translational motion of the system.

This blue can contains a monatomic ideal gas at temperature \(T \) with mass \(m \) at an initial height \(h \). I then throw the can with initial velocity \(v \).
Let’s approach the 1st Law from the perspective of energy conservation.

Life would be pretty hard right now if I tried to keep track of the potential and kinetic energy of every molecule inside. YIKES. But, using that thermal energy term, life is a lot simpler.

I can use the kinematics I already know and the thermodynamics I’m learning to keep track of all the different forms of energy.
Let’s approach the 1st Law from the perspective of energy conservation.

\[W_{nc} = \Delta K_{cm} + \Delta E_{th} + \Delta U_{cm} \]

Clearly I could put my canister on the stove top and witness the temperature increase in the gas inside, yet there’s no work being done on the gas.

So we’re still missing an energy transfer, about which we just learned last week: heat.

The heat transferred into the system goes on the same side as the work done on the system.
Let’s approach the 1st Law from the perspective of energy conservation.

\[W_{nc} + Q = \Delta K_{cm} + \Delta E_{th} + \Delta U_{cm} \]

Now, most of the thermodynamics problems won’t be nearly so interesting as a launched can of monatomic gas with a bunsen burner attached.

For all of the ideal gas systems we’re going to study in thermodynamics, the \(\Delta K_{cm} = 0 \) and \(\Delta U_{cm} = 0 \).

\[W_{nc} + Q = \Delta E_{th} \]
Let’s approach the 1st Law from the perspective of energy conservation.

$$W_{nc} + Q = \Delta E_{th}$$

With one change, we will arrive at the first law of thermodynamics. In thermodynamics, we talk about the work done BY the system on the environment (W_{sys}) rather than the work done ON the system by the environment (W_{nc}).

$$W_{nc} = -W_{sys}$$
So, you see, the 1st Law of Thermodynamics comes from a special case of the energy conservation formulation we already know and love!

Just remember to add back the kinetic and potential energy terms on the left-hand side of the equation if you’ve got a moving, macroscopic system as well.
Break up into 5 groups of ~ 4 students each. Each group will tackle one of the following scenarios, evaluating the W, Q, ΔK_{cm}, ΔU_{cm}, ΔE_{th}, and ΔT for each system.

1: a steel block slides to rest as it moves up a rough, inclined surface
2: a rigid cylinder of an ideal gas is held still in a flame.
3: an expanding spring pushes a rigid cylinder of gas across a frictionless surface
4: an expanding spring pushes in a piston on a well-insulated cylinder of gas
5: a steel block is held at rest in a flame.